Page 112 - Azerbaijan State University of Economics
P. 112

THE                      JOURNAL OF ECONOMIC SCIENCES: THEORY AND PRACTICE, V.81, # 2, 2024, pp. 104-116

                    Table (5): Unit Roots Test Results
                                                Phillips –Perron (PP)
                                                      LEVEL
                             Variables       EMP       EDU       HEXP      INF      LEB      LPR
                       Intercept   t-statistic   -2.9019   -2.7855   0.3202   -1.9970   -1.4594   -1.3430
                                    Prob     0.0562    0.0716    0.9758    0.2866   0.5409   0.5972
                         Trand    t-statistic   -3.0614   -2.6892   -2.8828   -0.7635   -1.9455   -0.6850
                          and       Prob     0.1324    0.2473    0.1810    0.9588   0.6077   0.9657
                       Intercept
                         None     t-statistic   0.4445   0.6602   2.9329   -0.9538   3.5152   1.3974
                                    Prob     0.8045    0.8536    0.9987    0.2965   0.9997   0.9563
                                                   1st Difference
                                             d(EMP)    D(EDU)    d(HEXP)   d(INF)   d(LEB)   d(LPR)
                       Intercept   t-statistic   -6.1270   -4.9254   -6.0518   -3.6653   -8.7874   -4.7599
                                    Prob     0.0000    0.0004    0.0000    0.0099   0.0000   0.0006
                         Trand    t-statistic   -7.0519   -4.9003   -5.8384   -3.7372   -9.3238   -4.9841
                          and       Prob     0.0000    0.0022    0.0002    0.0345   0.0000   0.0018
                       Intercept
                         None     t-statistic   -6.1497   -4.9329   -4.7413   -3.7073   -6.5423   -4.2946
                                    Prob     0.0000    0.0000    0.0000    0 .0006   0.0000   0.0001
                                              Augmented Dickey Fuller
                                                      LEVEL
                             Variables       EMP       EDU       HEXP      INF      LEB      LPR
                       Intercept   t-statistic   -2.9019   -2.7855   0.0605   -2.1318   -1.8263   -2.2298
                                    Prob     0.0562    0.0716    0.9574    0.2342   0.3604   0.2006
                         Trand    t-statistic   -2.5840   -2.6892   -2.8828   -1.0829   -2.6459   -2.7203
                          and       Prob     0.2894    0.2473    0.1810    0.9164   0.2649   0.2363
                       Intercept
                         None     t-statistic   0.4445   0.6602   2.3610   -1.0032   -0.4889   2.1405
                                    Prob     0.8045    0.8536    0.9944    0.2768   0.4947   0.9907
                                                   1st Difference
                             Variables       d(EMP)    d(EDU)    d(HEXP)   d(INF)   d(LEB)   d(LPR)
                       Intercept   t-statistic   -6.1236   -4.9299   -5.7173   -3.8724   0.0448   -1.2876
                                    Prob     0.0000    0.0004    0.0000    0.0059   0.9549   0.6216
                         Trand    t-statistic   -6.8999   -4.9009   -5.5942   -4.2081   -0.3378   -4.7783
                          and       Prob     0.0000    0.0022    0.0004    0.0120   0.9849   0.0030
                       Intercept
                         None     t-statistic   -6.1431   -4.9369   -4.7425   -3.9733   -0.8475   -1.0665
                                    Prob     0.0000    0.0000    0.0000    0.0003   0.3395   0.2519
                               represent 1%, 5%& 10% corresponding significance levels.
                             ,  ,
                    Source: Prepared by the researcher predicated on outputs from EVIEWS12 software

                    The results from the PP and ADF tests indicate : Following a stabilization test, all
                    research  variables  were  determined  to  be  of  first-class  stability  I(1)  at  a  5%
                    significance level. Consequently, the ARDL model is the best suitable for analysing
                    the joint integration of the study variables.






                                                           112
   107   108   109   110   111   112   113   114   115   116   117