Page 27 - Azerbaijan State University of Economics
P. 27

Prerna Ahuja, Meenu Gupta, Jinesh Jain, Kiran Sood, Luan Vardari: HR Analytics Research
                                                      Landscape (2003–2024): A Systematic, Bibliometric, and Content Analysis


                    Nalla NNR. AI-Driven Predictive Analytics for workforce planning and optimisation.
                    International Journal of Scientific Research in Computer Science Engineering and
                    Information  Technology  [Internet].  2024  Aug  14;10(4):349–53.  Available  from:
                    https://doi.org/10.32628/cseit2477112

                    Opada FMM, Ibrahim MBH, Irawan A, Akbar MA, Rasyid A. Talent Acquisition
                    Strategies: A Comprehensive examination of recruitment policies for organisational
                    success. Advances in Human Resource Management Research [Internet]. 2024 May
                    30;2(2). Available from: https://doi.org/10.60079/ahrmr.v2i2.185

                    Patel  S.  How  HR  Analytics  can  Improve  Employee  Performance  and  Decision  -
                    Making. International Scientific Journal of Engineering and Management [Internet].
                    2025 May 23;04(05):1–9. Available from: https://doi.org/10.55041/isjem03800

                    Paul J, Lim WM, O’Cass A, Hao AW, Bresciani S. Scientific procedures and rationales
                    for  systematic  literature  reviews  (SPAR‐4‐SLR).  International  Journal  of  Consumer
                    Studies [Internet]. 2021 Apr 16;45(4). Available from: https://doi.org/10.1111/ijcs.12695

                    Polyakova A, Kolmakov V, Pokamestov I. Data-driven HR Analytics in a Quality
                    Management System. Quality-Access to Success. 2020 Jun 1;21(176).

                    Pratt  M,  Boudhane  M,  Cakula  S.  Employee  attrition  estimation  using  random  Forest
                    algorithm. Baltic Journal of Modern Computing [Internet]. 2021 Jan 1;9(1). Available from:
                    https://doi.org/10.22364/bjmc.2021.9.1.04

                    Qin C, Zhang L, Zha R, Shen D, Zhang Q, Sun Y, et al. A comprehensive survey of
                    artificial  intelligence  techniques  for  talent  analytics.  arXiv  (Cornell  University)
                    [Internet]. 2023 Jan 1; Available from: https://arxiv.org/abs/2307.03195

                    Ramamurthy  KN,  Singh  M,  Davis  M,  Kevern  JA,  Klein  U,  Peran  M.  Identifying
                    Employees  for  Re-skilling  Using  an  Analytics-Based  Approach.  IEEE  International
                    Conference  on  Data  Mining  Workshop  (ICDMW)  [Internet].  2015  Nov  1;345–54.
                    Available from: https://doi.org/10.1109/icdmw.2015.206

                    Rasheed MH, Khalid J, Ali A, Rasheed M, Ali K. Human Resource Analytics in the Era
                    of  Artificial  Intelligence:  Leveraging  Knowledge  towards  Organizational  Success  in
                    Pakistan.  Journal  of  Chinese  Human  Resource  Management  [Internet].  2024  May
                    27;15(3). Available from: https://doi.org/10.47297/wspchrmwsp2040-800501.20241503

                    Ravesangar K, Narayanan S. Adoption of HR analytics to enhance employee retention
                    in the workplace: A review. Human Resources Management and Services [Internet].
                    2024 Jun 25;6(3):3481. Available from: https://doi.org/10.18282/hrms.v6i3.3481

                    Roberts  DR.  Using  engagement  analytics  to  improve  organisational  performance.
                    Employment  Relations  Today  [Internet].  2013  Sep  1;40(3):57–65.  Available  from:
                    https://doi.org/10.1002/ert.21422

                    Rodrigues M, Mendes L. Mapping of the literature on social responsibility in the mining
                    industry: A systematic literature review. Journal of Cleaner Production [Internet]. 2018
                    Feb 5;181:88–101. Available from: https://doi.org/10.1016/j.jclepro.2018.01.163


                                                           27
   22   23   24   25   26   27   28   29   30   31   32